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Abstract—The estimation of temperature inside battery cells
requires accurate information about the cooling conditions even
when the temperature of the battery surface is measured. This
paper presents a novel approach of estimating temperature dis-
tribution inside cylindrical batteries under unknown convective
cooling conditions. A computationally efficient thermal model
is first developed using a polynomial approximation of the
temperature profile inside the battery cell. The Dual Extended
Kalman Filter (DEKF) is then applied for the identification of
the convection coefficient and the estimation of temperature
inside the battery. In the proposed modeling approach, the
thermal properties are represented by volume averaged lumped
values with uniformly distributed heat generation. The model
is parameterized and validated using experimental data from a
2.3 Ah 26650 Lithium-Iron-Phosphate (LFP) battery cell with a
forced-air convective cooling during hybrid electric vehicle (HEV)
drive cycles. Experimental results show that the proposed DEKF-
based estimation method can provide an accurate prediction of
core temperature under unknown cooling condition by measuring
the cell current, voltage, and surface and ambient temperature.
The accuracy is such that the scheme cam also be used for fault
detection of a cooling system malfunction.

Index Terms—Lithium ion batteries, Thermal model, Reduced
order model, Dual Extended Kalman Filter, Parameter identifi-
cation

I. INTRODUCTION

OVER the past years, energy storage systems utilizing
lithium ion (Li-ion) batteries have become one of the

most critical components for realizing efficient and clean
transportation systems through electrification of vehicles, e.g.,
hybrid electric vehicles (HEVs), plug-in hybrid electric ve-
hicles (PHEVs), and electric vehicles(EVs). Li-ion batteries
have several advantages – no memory effect, wide range of
operating temperature, and high energy and power density
[1], [2]. However, the Li-ion battery performance, cycle life
and capacity are adversely affected by sustained operation at
extreme (above 45oC and below freezing) temperatures [3]–
[6], a recurring problem in automotive applications where
batteries are exposed to temperature extremes with frequent
high current discharge/charge rate that cause internal heating.
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Thus, being able to estimate/predict the temperature distri-
bution across cells and packs is vital for formulating power
management strategies that are mindful of the performance
limitations of these versatile power/energy sources. In general,
the performance of the cooling system can be degraded due
to various reasons such as dust on fan blades, partial blockage
in pipes, motor/pump ageing, and even a motor/pump failure.
When such a degradation or failure occurs, it is not possible
to reject the heat generated from the battery cell. In this
condition, the lifespan of the battery exposed to the extreme
temperatures will be considerably shortened. Therefore, it is
important to identify the convective heat coefficient not only
to accurately estimate the temperature distribution inside the
battery but also for fault detection to ensure safe and reliable
operation of the vehicle system.

This paper considers a novel method for estimating temper-
ature distribution inside cylindrical batteries with simultaneous
estimation of the convective cooling condition. To achieve
this goal, a computationally efficient thermal model for a
cylindrical cell is utilized to estimate simultaneously the
convection coefficient and radial temperature distribution of
the cell. Unlike existing reduced order modeling approaches
in [7]–[10], and [11], a polynomial approximation to the
solution of the heat transfer problem is used; this approach
facilitates a systematic estimation of core, surface, volume-
averaged temperatures, and volume-averaged temperature gra-
dients. Dual Extended Kalman Filter (DEKF) is applied for the
identification of the convection coefficient and the temperature
distribution inside a cylindrical battery cell. The proposed
estimation method provides the capability of detecting the
malfunction of cooling system by monitoring the difference
between the identified and off-line predetermined convection
coefficient. This benefit indicates that a significant rise in
temperature can be prevented by augmenting the proposed
method with other existing battery management strategies for
the safe and robust operation.

This paper is organized as follows: Section II presents the
convective heat transfer problem for a cylindrical battery cell
and the reduced order thermal model. Model reduction is
performed using a polynomial approximation of the partial
differential equation (PDE) system. The thermal properties
of the battery are experimentally identified and sensitivity
of parameters is analyzed in Section III. In Section IV,
the temperature estimator applying a Dual Extended Kalman
filter by using the proposed model for estimating the core
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Fig. 1. Schematic for a A123 26650 cylindrical battery cell

temperature and identifying the convection coefficient. Section
V presents and discusses experimental results and conclusions
are drawn in Section VI.

II. HEAT TRANSFER PROBLEM IN CYLINDRICAL
BATTERIES

This paper considers the radially distributed (1-D) thermal
behavior of a cylindrical battery cell with convective heat
transfer boundary condition as illustrated in Fig. 1 [7], [12],
[13]. A cylindrical Li-ion battery, so-called a jelly-roll, is fab-
ricated by rolling a stack of cathode/separtor/anode layers. The
individual layered sheets are thin, therefore, it is reasonable
to assume uniform heat generation along the radial direction
[13], [14]. Lumped parameters are used so that material
properties such as thermal conductivity, density, and specific
heat coefficient are assumed to be constant in a homogeneous
and isotropic body. The thermal conductivity is one or two
orders of magnitude higher in the axial direction than in
the radial direction. Therefore, the temperature distribution
in the axial direction will be more uniform [15], [16]. The
governing equation of the 1-D temperature distribution T (r, t)
and boundary conditions are given by

ρcp
∂T (r, t)

∂t
= kth

∂2T (r, t)

∂r2
+
kth
r

∂T (r, t)

∂r
+
Q(t)

Vb
, (1)

B.C.’s
∂T (r, t)

∂r

∣∣∣
r=0

= 0, (2)

∂T (r, t)

∂r

∣∣∣
r=R

= − h

kth
(T (R, t)− T∞), (3)

where t, ρ, cp and kth represent time, volume-averaged den-
sity, specific heat coefficient, and thermal conductivity of the
cell respectively. The radius of the battery cell is R, Q is
the heat generation inside the cell, and Vb is the volume of
battery cell. Ambient temperature for convection is denoted by
T∞. The boundary condition in (2) represent the symmetric
structure of the battery about the core. The other boundary
condition shown in (3) represents the convective heat transfer
at the surface of the battery.

A. Model reduction

With evenly distributed heat generation, the temperature
distribution along r-direction of the battery cell is assumed

to satisfy the following polynomial approximation proposed
in [17]

T (r, t) = a(t) + b(t)
( r
R

)2

+ d(t)
( r
R

)4

, (4)

where a(t), b(t), and d(t) are time-varying constants. To
satisfy the symmetric boundary condition at the core of
the battery cell, (4) contains only even powers of r. Thus,
the temperatures at core and surface of the battery can be
expressed as

T (0, t) = Tc = a(t), (5)
T (R, t) = Ts = a(t) + b(t) + d(t), (6)

where subscripts c and s denote core and surface respectively.
The volume-averaged temperature T̄ and temperature gra-

dient γ̄ are introduced as follows:

T̄ =
2

R2

∫ R

0

rTdr, (7)

γ̄ =
2

R2

∫ R

0

r

(
∂T

∂r

)
dr. (8)

These volume-averaged values are used as the states unlike
existing approaches in [8], [9], and [11].

By substituting (4) in (7) and (8), T̄ and γ̄ can be expressed
in terms of constants as

T̄ = a(t) +
b(t)

2
+
d(t)

4
, (9)

γ̄ =
4b(t)

3R
+

8d(t)

5R
. (10)

By rearranging (6), (9), and (10), time-varying constants
a(t), b(t), and d(t) can be written by

a(t) = 4Ts − 3T̄ − 15R

8
γ̄, (11)

b(t) = − 18Ts + 18T̄ +
15R

2
γ̄, (12)

d(t) = 15Ts − 15T̄ − 45R

8
γ̄. (13)

By substituting (11), (12), and (13) in (4), the temperature
distribution can be expressed as a function of Ts, T̄ , and γ̄

T (r, t) = 4Ts − 3T̄ − 15R

8
γ̄

+

[
−18Ts + 18T̄ +

15R

2
γ̄

]( r
R

)2

(14)

+

[
15Ts − 15T̄ − 45R

8
γ̄

]( r
R

)4

.

The PDE (1) can be converted into ODEs by substituting
(14) in volume-averaged governing equation and its partial
derivative with respect to r as follows:

dT̄

dt
+

48α

R2
T̄ − 48α

R2
Ts +

15α

R
γ̄ − α

kthVb
Q = 0, (15)

dγ̄

dt
+

320α

R3
T̄ − 320α

R3
Ts +

120α

R2
γ̄ = 0, (16)

where α is thermal diffusivity and is defined as follows:

α = kth/ρcp. (17)
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Fig. 2. Comparison of frequency response functions between analytical
solution and polynomial approximation

Using (3), the surface temperature Ts can be rewritten as

Ts =
24kth

24kth +Rh
T̄ +

15kthR

48kth + 2Rh
γ̄ +

Rh

24kth +Rh
T∞.

(18)

Finally, a two-state thermal model can be given by the
following form:

ẋ =Ax+Bu,

y = Cx+Du, (19)

where x = [T̄ γ̄]T , u = [Q T∞]T and y = [Tc Ts]
T are

states, inputs and outputs respectively. System matrices A, B,
C, and D are defined as follows:

A =

[
−48αh

R(24kth+Rh)
−15αh

24kth+Rh
−320αh

R2(24kth+Rh)
−120α(4kth+Rh)
R2(24kth+Rh)

]
,

B =

[
α

kthVb

48αh
R(24kth+Rh)

0 320αh
R2(24kth+Rh)

]
,

C =

[
24kth−3Rh
24kth+Rh − 120Rkth+15R2h

8(24kth+Rh)
24kth

24kth+Rh
15Rkth

48kth+2Rh

]
,

D =

[
0 4Rh

24kth+Rh

0 Rh
24kth+Rh

]
. (20)

This state-space representation is used for the development of
control design.

B. Frequency domain analysis
The transfer function of the thermal system H(s) is calcu-

lated by

H(s) = D + C(sI −A)−1B, (21)

where s is Laplace variable.
The frequency response of transfer function of the proposed

model is compared to that of the analytical solution in [7]. Pa-

TABLE I
PARAMETERS OF THE BATTERY [7]

Parameter Symbol Value Unit
Density ρ 1824 kg/m3

Specific heat coeff. cp 825 J/kgK
Thermal conductivity kth 0.488 W/mK

Convection coeff. h 5 W/m2-K
Radius R 12.93e-3 m
Height L 65.15e-3 m
Volume Vb 3.4219e-5 m3

rameters used to generate the plots in Fig. 2 are summarized in
Table I. The heat transfer coefficient of h=5W/m2K is chosen
since this value is typical of natural convection condition [18].

Figure 2 shows that the effects of heat generation on core
and surface temperature, denoted by H11(s) and H21(s) re-
spectively, can be accurately predicted over the whole range of
frequency. On the other hand, the responses of core and surface
temperature excited by the ambient temperature, H12(s) and
H22(s), are nearly identical to the analytical solution for
frequencies below 10−2 Hz. In general, the temperature of
cooling media does not change rapidly; thus, the prediction of
temperature distribution using the proposed approach can be
considered sufficiently accurate.

C. Heat generation calculation

Since heat generation rate Q is the input to the battery
thermal system, the input needs to be accurately calculated
from measurement data, such as current and voltage during
operation. In [19], Bernardi et al. proposed the simplified form
of heat generation rate with assumptions that heat generation
due to enthalpy-of-mixing, phase-change, and heat capacity
are assumed to be negligible expressed by

Q = i(U − V )− i
(
T
∂U

∂T

)
, (22)

where i, U , and V represent the current, the open-circuit
voltage (OCV), and the terminal voltage respectively. As
shown in Fig 3, the OCV is a function of the battery state-
of-charge(SOC). This function is experimentally obtained by
averaging the measured terminal voltages during charging
and discharging a battery with C/20 current rate under a
Constant Current Constant Voltage (CCCV) charging protocol.
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Fig. 3. Open-circuit voltage approximately obtained by averaging terminal
voltages during charging and discharging a battery with C/20 current rate
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Fig. 4. Data set used for parameter ID: current (top), voltage (middle), and
heat generation rate (bottom) during Urban-Assault Cycle

The OCV is then calculated at the estimated SOC value by
integrating measured current with respect to time as

dSOC
dt

= − I

3600Qb
(23)

where Qb is a battery capacity in Ah. The sign convention is
such that positive current denotes battery discharging.

The last term in (22) is the heat generation from entropy
change. In this paper, heat generation due to entropy change
is neglected for simplicity. This simplification is warranted
since the typical SOC range of HEV operation is between
40% and 60% in which ∂U

∂T of the battery cell is insignificant
as shown in [9] for this chemistry. In addition, the reversible
entropic heat generation would have zero mean value when
the battery is operating in charge-sustaining mode, typical of
HEV operation.

III. PARAMETER IDENTIFICATION

In this section, the value of the lumped parameters in (19)
for a 2.3 Ah 26650 LFP battery cell by A123 are identified
through experimentation. Figure 4 shows current, voltage and
calculated heat generation rate profiles over power demanding

TABLE II
IDENTIFIED THERMAL PROPERTIES

Parameter Symbol Value Reference
Density ρ 2047* 2118 [20]

Sp. heat coeff. cp 1148.1 1004.9–1102.6 [9], [21]
Thermal cond. kth 0.698 0.69 [20]
Conv. coeff. h 60.00 65.99 [21]

* Measured

0 200 400 600 800 1000 1200 1400 1600 1800 2000

30

35

40

T
em
p
er
at
u
re
 (
 o
C
)

 

 
T
c,m

T
c,e

T
s,e

T
s,m

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.5

0

0.5

Time(sec)

T
em
p
er
at
u
re
 (
 o
C
)

 

 

T
c,m
-T
c,e

T
s,m
-T
s,e

80 85
27.2

27.4

27.6

27.8

 

 

Fig. 5. Comparison between measured and simulated temperatures (top)
and errors (bottom)

cycle used for military ground vehicle [22] Urban-Assault
Cycle (UAC) that are used for the parametrization. The model
is then validated using a different duty cycle. The numerical
analysis on parameter sensitivity is performed to investigate
the use of constant parameters for thermal conductivity and
heat capacity and the importance of identifying the convection
coefficient on-line.

A. Identifying thermal properties

Parameter identification is important for accurately pre-
dicting the temperature distribution inside a battery cell as
the parameters kth, cp, ρ, and h determine the dynamics
of thermal model. As the density can be assumed to be
a measurable constant, only three parameters such as kth,
cp, and h are considered for the parameter identification.
Following an experimental set-up in [21], we measured a cell
current, voltage, surface and core temperature of the battery
cell, and ambient temperature for parameter identification. As
discussed in [21], some parameters are assumed to be known
since all parameters are not identifiable without using the core
temperature.

Let the error between the measured temperatures and model
outputs at each time step k in vector form be

e(k, θ) = [Tc,e(k, θ) Ts,e(k, θ)]
T − [Tc,m(k) Ts,m(k)]T ,

(24)

where θ = [kth cp h]T , Tc,e and Ts,e represent the model
parameters, core and surface temperatures respectively.

Parameters are identified by minimizing the Euclidean norm
of the difference between the measured and simulated temper-
atures as given by

θ∗ = argmin
θ

Nf∑
k=1

||e(k, θ)||2, (25)

where Nf is the number of measurement points. The mini-
mization problem is solved by using the fmincon function in
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Fig. 6. (a) Expected temperature distribution along the normalized radius (r/R) using polynomial approximation; (b) Cell temperature (top) and temperature
gradient (bottom)

MATLAB; the parameters in Table I are used as initial guess
for the identification.

Table II presents the identified thermal properties for the
A123 26650 battery; these parameters are close to the values
presented in the literature. The identified specific heat coeffi-
cient cp is 4% larger than the maximum value determined in
[9] where cp was determined by measuring transient responses
of the battery under different pulses. It was discussed that
the deviation in identified value of cp might be caused by
measurement uncertainty in temperature and the temperature
dependency of the heat capacity.

Despite using similar experimental data and setup, the iden-
tified convection coefficient is 10% smaller than the coefficient
calculated by using thermal resistance and battery surface
area in [21]. This difference between our identified value
and the one in [21] may be due to the two different model
structures. Lin et al. in [21] considered two different materials,
namely one for the core and one for the surface, whereas
we assume the battery is a homogeneous and isotropic body.
In order to accurately determine the convection coefficient,
the temperature measurements of a pure metal during thermal
relaxation can be used. For instance, the specific heat capacity
of copper at 25oC is known as 385 J/kgK. For more detailed
description about the experiment, the interested reader is
referred to [23].

Figure 5 shows the measured and simulated temperatures
at the core and surface of the battery. The error between
the measurements and simulated temperature is less than the
sensor accuracy of 0.5oC. Thermocouples used for temperature
measurements are T-type whose accuracy is the maximum
of 0.5oC or 0.4% according to technical information from
the manufacture, OMEGA. The parameterized thermal model
accurately predicts the temperature inside the battery, which is
difficult to measure in practical applications. Using (15), the
temperature distribution inside the battery can be predicted as
presented in Fig 6(a). Figure 6(b) shows the volume-averaged
temperature and its gradient of the battery respectively. As

evidenced in Fig. 6(b), there is no significant difference be-
tween the volume-averaged temperature and the linear average
of core and surface temperatures, i.e. (Ts + Tc)/2. It should
be noted that existing approaches in [8], [9], [11] have the
capability of predicting the core temperature and have shown
the efficacy of their proposed methods on the prediction of
temperature inside the cell under consideration in this work.
However, the phenomena may differ in the case of a cell
with larger radius [24]. The volume-averaged temperature
gradient is different from the linear temperature gradient, i.e.
(Ts − Tc)/R; in particular, the volume-averaged temperature
gradient is 1.36 times greater than linear temperature gradient
under the UAC test. Since non-uniform temperature distri-
bution can lead to accelerated capacity losses of inner core
[24], the volume-averaged temperature gradient is an important
metric to describe severity of temperature inhomogeneity
inside the battery.

B. Model validation

In order to validate the performance of the proposed model
with identified parameters, the battery was tested under a
different HEV drive cycle, the Escort Convoy Cycle (ECC).
The current and voltage profiles for this cycle are illustrated
in Fig 7(a). Figure 7(b) shows that there are slight differences
between the measured and simulated temperatures; in partic-
ular, the root-mean-square errors (RMSE) of core and surface
temperatures are 0.4 and 0.3oC respectively. These differences
may be explained with the assumption of radially uniform
heat generation and high conductivity in the axial direction.
Additionally, the hysteresis effect of the LFP battery is not
properly considered in heat generation formulation (22), which
might introduce error in the calculation of heat generation
rate. Nevertheless, since the comparison of temperatures shows
good agreement and reasonably small RMSEs, it can be
concluded that the proposed model with identified thermal
properties is sufficiently accurate for HEV drive cycles.
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C. Parameter sensitivity analysis

In order to investigate the impact of parameter variations
on the performance of temperature prediction, each parameter
is varied from the identified value while holding the other
parameters constant. Figure 8 shows that parameters such
as thermal conductivity kth and specific heat capacity cp
have more influence on the prediction of core temperature
than surface temperature. This result corresponds to the fact
that the heat inside the battery cell is transferred through
the conduction. On the other hand, the prediction of surface
temperature is most sensitive to the variation of convection
coefficient, which can be explained given the fact that the
convection coefficient is directly related to the convective
boundary condition (3). The convection coefficient has the
most significant influence on the overall prediction of the core
and surface temperature.

The specific heat coefficient and thermal conductivity are
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Fig. 8. The effect of parameter variation to the prediction of core and surface
temperatures

weakly dependent on temperature [9], [25], [26], so the
assumption of constant parameters can be justified. On the
other hand, the convection coefficient is highly dependent
on fan speed or fluid velocity as expressed by empirical
correlations provided by Zukauskas [27]. Consequently, the
accurate identification of convection coefficient is important
for better prediction of temperature inside the battery. This
importance justifies the on-line identification of the convection
coefficient for better estimation of temperature as detailed in
Section IV.

IV. ESTIMATION OF TEMPERATURE AND
CONVECTION COEFFICIENT

As discussed in section III-C, the estimation of temperature
inside the battery cell requires accurate knowledge of the
convection coefficient which depends on cooling condition.
In order to identify the convection coefficient on-line, the
Dual Extended Kalman filter (DEKF) [28] is applied for better
estimation of temperature distribution inside the battery cell.
The other thermal parameters, such as thermal conductivity
and specific heat coefficient, have less impact on temperature
and do not change significantly over time. Therefore, the
constant values identified in section III can be used.

Assuming the input u(t) is constant over each sampling
interval, a parameter varying (PV) discrete-time model at time
step k can be obtained as

xk+1 = Ad(θk)xk +Bd(θk)uk,

yk = C(θk)xk +D(θk)uk, (26)

where x = [T̄ γ̄]T , y = [Tc Ts]
T , θ = h, and u = [Q T∞]T .

System matrices Ad ≈ I+A∆T and Bd = B∆T are obtained
from matrices in (20) where the sampling period is ∆T , and
I is the identity matrix.

Let the PV thermal system in discrete-time domain be
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expressed in a general form by:

xk+1 = f(xk, uk, θk) + wk,

yk = g(xk, uk, θk) + vk,

θk+1 = θk + rk, (27)

where wk, vk, and rk, are independent, zero-mean, Gaussian
noise processes of covariance matrices Σw, Σv , and Σr,
respectively. The design of the DEKF estimator is given as
following update processes.
Time update for the parameter filter:

θ̂−k = θ̂+
k−1, (28)

S−k = S+
k−1 + Σr. (29)

Time update for the state filter:

x̂−k = f(x̂+
k−1, uk−1, θ̂

−
k ), (30)

P−k =Ak−1P
+
k−1A

T
k−1 + Σw. (31)

Measurement update for the state filter:

Kk = P−k C
x
k
T
[
CxkP

−
k C

x
k
T + Σv

]−1

, (32)

x̂+
k = x̂−k +Kk

[
yk − g(x̂−k , uk, θ̂

−
k )
]
, (33)

P+
k = [I −KkC

x
k ]P−k . (34)

Measurement update for the parameter filter:

Lk = S−k C
θ
k

T
[
CθkP

−
k C

θ
k

T
+ Σe

]−1

, (35)

θ̂+
k = θ̂−k + Lk

[
yk − g(x̂−k , uk, θ̂

−
k )
]
, (36)

S+
k =

[
I − LkCθk

]
S−k , (37)

where the matrices are calculated by

Ak−1 =
∂f(xk−1, uk−1, θ̂

−
k )

∂xk−1
|xk−1=x̂+

k−1
(38)

Cxk =
∂g(xk, uk, θ̂

−
k )

∂xk
|xk=x̂−

k
, (39)

Cθk =
dg(x̂−k , uk, θ)

dθ
|θ=θ̂−k . (40)

The details of the matrices are provided in Appendix A.
Superscripts − and + denote the a priori and a posteriori
values respectively.

The identified states x̂ and parameter θ̂, computed from the
above DEKF algorithm, are used to estimate the core temper-
ature in the battery cell from (26). The identified parameter
can be also used for monitoring the malfunction or degradation
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Fig. 10. Comparison of performance between KF estimator, DEKF estimator
during stage I: convection coefficient (top) and temperature (bottom)

of cooling system. Under the assumption that the relationship
between the convection coefficient and fan speed or PWM
signal is known, the malfunction of the cooling system can
be detected by comparing the identified parameter with a
predetermined range of values θ∗ based on the identification
process performed at various cooling conditions. When the
difference between the identified and predetermined values
|θ̂− θ∗| is bounded and small, it can be considered that there
is no fault in the cooling system. On the other hand, where
|θ̂ − θ∗| � ε where ε is a pretuned threshold, a cooling fault
can be detected. Furthermore, |(θ̂−θ∗)/θ∗| can be interpreted
as the severity of degradation of cooling system.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed temperature
estimator using the DEKF is compared with that of the
baseline Kalman Filter (KF) estimator without parameter iden-
tification. The battery is tested using the ECC under different
cooling conditions. Three different forced convective cooling
conditions (stage I, stage II, and stage III) are achieved by
using different PWM signals driving the fan as shown in Fig.
9 which corresponds to an increase, followed by a decrease
in the coolant flow rate. In order to investigate the influence
of change in the parameter on the temperature estimation, the
parameter is provided to each estimator as following:
• In stage I, the off-line predetermined convection coeffi-

cient is provided to the KF and is used for the DEKF as
an initial value: θ̃ = θ∗ and θ̂(0) = θ∗

• In stage II, the off-line predetermined convection coeffi-
cient is provided to the KF only: θ̃ = θ∗

• In stage III, two times larger convection coefficient com-
pared to the known value is provided to the KF: θ̃ = 2θ∗

where θ̃ and θ̂ denote fixed and identified parameters for
the KF and the DEKF respectively. Other thermal properties
such as thermal conductivity and specific heat coefficient are
assumed constant with values identified in section III.
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It is assumed that the initial temperature distribution inside
the battery is uniform at 30oC and convection coefficient is
56.2 W/m2K, i.e. x̂(0) = [30 0]T and θ̂(0) = 56.2 respec-
tively. The covariance matrix for the state Σw = β1

2diag(1, 1)
describes the process noise where β > 0 is a parameter
for tuning relaxed to model inaccuracy. The noise covariance
Σv = σ2 is determined from the standard deviation of
temperature signal σ = 0.05oC. The covariance matrix for
the parameter Σr = β2

2 influences the performance of noise
filtering and the rate of parameter convergence. Ultimately, the
initial condition of the error covariance matrix and the tuning
parameter are chosen as P (0) = diag(1, 1), β1 = 0.0005,
S(0) = 1, and β2 = 0.01 through repeated simulations
respectively.

The results for the parameter and state estimation are
shown in Fig. 10–12 and summarized in Table III. Figure 10
shows that the closed loop estimators can accurately predict
temperature inside the battery. Even though the identified
value is used as an initial guess for the parameter, it can be
noticed that there is a large deviation in the initial part of the
simulation. This deviation is caused by the error in the initial
states. Nevertheless, the on-line identified parameter is close
to the off-line determined value. Therefore, the performance
of DEKF estimator is comparable to that of KF estimator.
In particular, the RMSE for core temperature estimation by
DEKF is 0.26, the same RMSE by the KF. Even though there
is a slight error between the measured and estimated temper-
ature, the closed loop estimators show a good performance in
predicting core temperature overall. As discussed in Section
III-C, thermal properties can vary with respect to operating
temperature. Therefore, it is expected that better performance
can be achieved by using temperature-dependent parameters
for thermal conductivity and specific heat coefficient.

Figure 11 illustrates the performance of temperature estima-
tion by the closed estimator in stage II when there are sudden
changes in the cooling condition. The KF can accurately
estimate the core temperature with information about the
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Fig. 12. Comparison of performance between KF estimator, DEKF estimator
during stage III: convection coefficient (top) and temperature (bottom)

change in parameter value. Since the DEKF is capable of
compensating inaccuracy in the parameter of the system, the
DEKF provides reasonably accurate estimates for the core
temperature by comparing the core temperature predicted by
the KF estimator. Even though the RMSE for core temperature
estimation by DEKF is slightly larger than the RMSE by the
KF, the error is still reasonably small with considerations of
the sensor accuracy.

As seen from Fig. 12, the KF estimator overestimates
the core temperature when the incorrect parameter value is
used as a convection coefficient. In other words, the reliable
estimation of core temperature is only possible when the
accurate parameter is available. Thus, it can be concluded
that the DEKF estimator outperforms the KF estimator due to
the capability of parameter identification. The RMSE for core
temperature estimation in stage III can be substantially reduced
from 1.18 to 0.31 by the DEKF. It is worthy to note that the
DEKF can be augmented with other existing fault detection
methods and power management strategies to improve the
system robustness without cost increase. For instance, in order
to detect partial blockage in cooling system, typically, a mass
flow or pressure sensor is required. The DEKF enables the
identification of convection coefficient by using sensors which
are already equipped with the battery. Thus, by monitoring the
difference between the identified and off-line predetermined
values, the malfunction of cooling system can be detected.

TABLE III
PERFORMANCE OF TEMPERATURE ESTIMATION: RMSES FOR CORE AND

SURFACE

Method DEKF KF

Location Core Surface Core Surface
Stage I 0.26 0.07 0.26 0.07
Stage II 0.39 0.08 0.29 0.08
Stage III 0.31 0.11 1.18 0.15
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This performance tells that a significant rise in temperature can
be prevented by limiting maximum discharge/charge current
rate computed from the estimated parameter and states. Thus,
the operation of the battery system can be safe and robust.

VI. CONCLUSION

In this study, a method to estimate the temperature distri-
bution in cylindrical batteries under unknown cooling con-
dition is proposed. First, a radially distributed 1-D thermal
modeling approach for a cylindrical battery cell is considered
and polynomial approximation is applied to obtain a reduced
order model enabling the development of real-time applica-
tions. Frequency domain analysis shows that the proposed
model provides sufficiently accurate prediction of core and
surface temperatures with a reasonable assumption that the
temperature of cooling media does not change rapidly. The
proposed model is used to identify thermal properties and
convective coefficient for a 2.3 Ah 26650 LFP battery cell
using a set of measured data. The numerical analysis on
parameter sensitivity supports the use of constant parameters
for thermal conductivity and heat capacity and the impor-
tance of identifying the convection coefficient on-line. Then,
the Dual Extended Kalman Filter is applied to estimate the
temperature inside the battery and convection coefficient by
the cooling fan. The proposed method requires no knowledge
of the convective cooling conditions. The results shows that
the proposed DEKF estimator can provide reasonably accurate
estimates of core temperature and convection coefficient by
using surface temperature which is relatively easy to measure
in practice. In addition, a faulty operation in the cooling system
can be detected by monitoring the difference between the
identified and off-line predetermined values. Since forced air
is used as a cooling media to reject heat from the cell in this
paper, the range of the convection coefficient of which we are
interested is less than 100 W/m2K. Therefore, the reader is
urged to investigate whether the polynomial approximation is
valid for their applications.

In the future, the proposed method can be used to develop
various battery management strategies, e.g. the determination
of maximum current with consideration of thermal constraints
or optimal fan scheduling for energy efficiency, leading to the
safe and efficient operation of the battery system.

APPENDIX A

The matrices Adk−1,Cxk , and Cθk are calculated by

Adk−1 =

 1− 48αθ̂−k
R(24kth+Rθ̂−k )

−15αθ̂−k
24kth+Rθ̂−k

−320αθ̂−k
R2(24kth+Rθ̂−k )

1− 120α(4kth+Rθ̂−k )

R2(24kth+Rθ̂−k )

,
Cxk =

 24kth−3Rθ̂−k
24kth+Rθ̂−k

− 120Rkth+15R2θ̂−k
8(24kth+Rθ̂−k )

24kth
24kth+Rθ̂−k

15Rkth
48kth+2Rθ̂−k

,
Cθk =

[
Ψ11 Ψ12

]
x̂−k−1 +

[
Φ11 Φ12

]
uk−1,

where

Ψ11 = − 24kth
(24cpρR

2kth + 3552∆Tk2th) + θ̂−k (cpρR
3 − 148∆TkthR)

cpρR(24kth + Rθ̂−k )3

Ψ12 = − 15kth
(24cpρR

2kth + 3072∆Tk2th) + θ̂−k (cpρR
3 − 168∆TkthR)

2cpρ(24kth + Rθ̂−k )3

Ψ11 = −
24R∆Tkth

Vbcpρ(24kth + Rθ̂−k )2

Ψ12 = 24kth
(24cpρR

2kth + 3552∆Tk2th) + θ̂−k (cpρR
3 − 148∆TkthR)

Rcpρ(24kth + Rθ̂−k )3
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